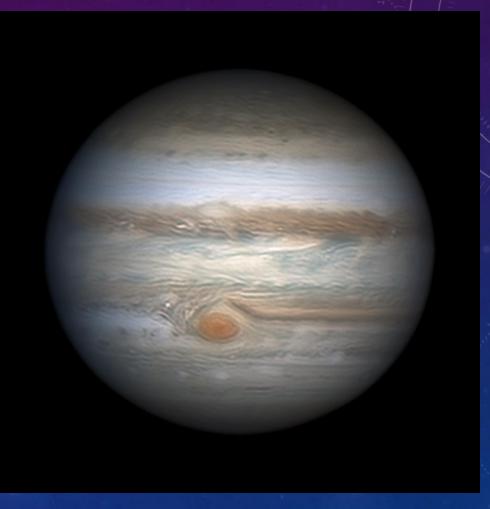
HIGH RESOLUTION PLANETARY IMAGING

PATRICK HSIEH

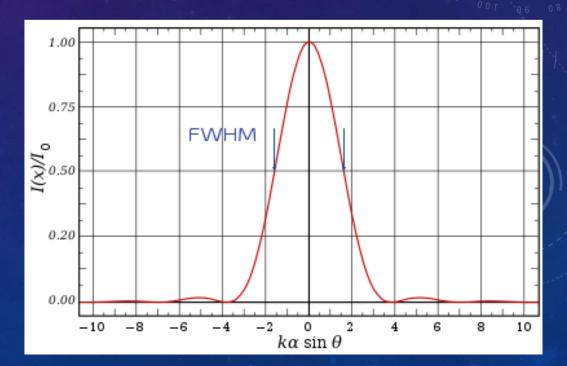
NASA / Hubble


OVERVIEW

- The Objective
- The Challenges
- Fundamental Principles
- Equipment Selection
- Imaging Technique
- Processing

THE OBJECTIVE

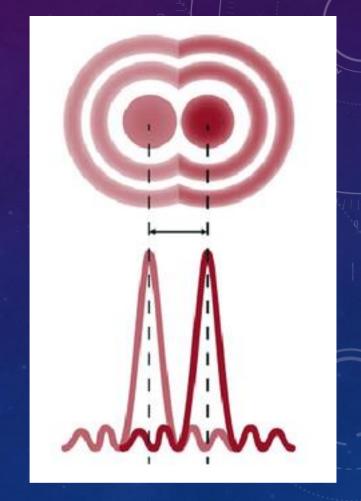
- Highest resolution images possible of planetary bodies
 - Maximum achievable resolution
 - Sources of image degradation
 - Countermeasures


THE CHALLENGES

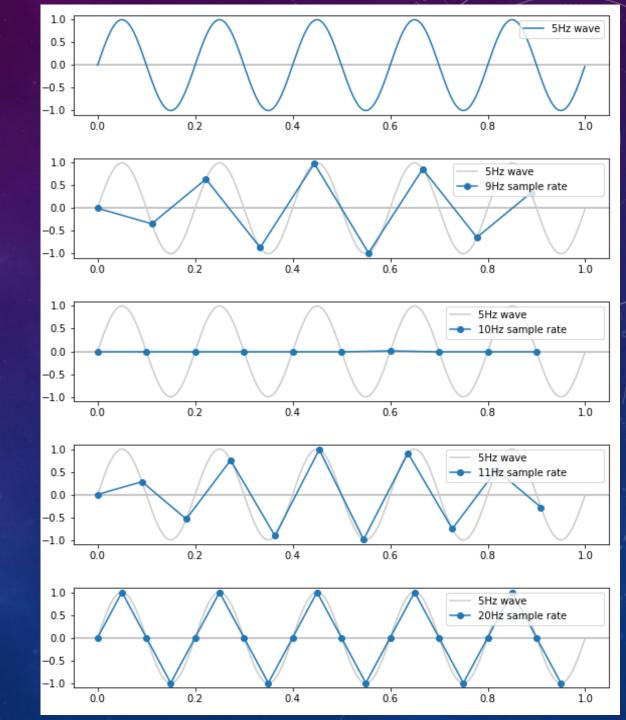
- Targets are small
 - Need to understand equipment factors to maximize resolution of details
- Imaging through 30+ miles of moving air
 - You cannot ever do better than Mother Nature presents in front of the telescope
 - Different countermeasures for near, middle, and distant atmospheric ranges
 - Mathematical countermeasures

Laser

(ACHIEVABLE RESOLUTION)

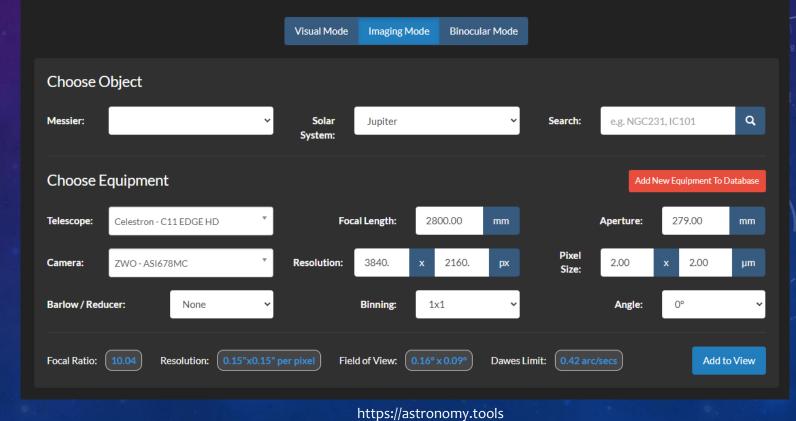

- Behavior of light
 - Wave-particle duality
 - Airy disk
 - Size determined by:
 - Wavelength of light (λ)
 - Red ≈ 650 nm, green ≈ 550 nm, blue ≈ 450 nm
 - Aperture (d)
 - Larger aperture yields smaller disk = higher resolution
 - Focal length (L)
 - Longer focal length yields larger disk = more magnification
- ✓ TL:DR : Maximum Achievable Resolution
 - Angular resolution depends ONLY on aperture
 - Linear resolution depends ONLY on f ratio

(ACHIEVABLE RESOLUTION)


- Resolution
 - Expressed as an angle
 - 360 degrees in a circle, 60 arcminutes per degree, 60 arcseconds per arcminute
 - 5° (5 degrees), 5' (5 arcminutes), 5" (5 arcseconds)
 - Ability to resolve determined by distance between peaks of Airy disks
 - <u>Rayleigh limit</u> = peak of one spot at first minimum of second
 - RL = 0.61 x λ / d, i.e. half diameter of Airy disk
 - 138 / aperture (mm) = arcseconds
 - <u>Dawes limit</u> = separation where two spots visually distinguishable
 - Close to FWHM of Airy disk
 - <u>116 / aperture (mm) = arcseconds</u>

(ACHIEVABLE RESOLUTION)

- Sampling
 - How many data points do we need to accurately reproduce a feature?
 - Nyquist criteria
 - At least 2 samples per feature = "Optimal" sampling
 - "Undersampling" sacrifices detail
 - "Oversampling" sacrifices signal-to-noise ratio
 - Optimize based on
 - Dawes limit
 - ≥ 2 pixels per Dawes limit
 - Pixels per Airy disk
 - ≥ 6 pixels per Airy disk



(ACHIEVABLE RESOLUTION)

- Based on Dawes Limit
 - Calculate scope limit
 - Calculate pixel angular resolution
 - Pixel Size (μ) · FL (mm) · 206.265
 - ≥ 2 pixels per Dawes Limit

ASTRONOMY TOOLS Field of View Calculators - Star Chart Cloud Forecast Lookup Coordinates FAQ Links Get In Touch

Field of View Calculator Test different telescope, camera & eyepiece combinations.

(ACHIEVABLE RESOLUTION)

- Based on Pixels per Airy Disk
 - \geq 6 pixels per full Airy disk
 - or
 - \geq 2 pixels per FWHM Airy disk
- ✓ TL;DR : Optimize sampling
 - ≥ 2 pixels per Dawes or ≥ L pixels per Airy disk
 - 3.76 μ pixels -> ~f/20
 - 2 μ pixels (ASI 678MC) -> ~f/10

AstroPix

Home Images Articles Books Observing More Search

Linear Diameter of the Airy Disk

Linear Diameter	13.4 microns
Calculate	
Wavelength in nanometers	550
Focal Ratio	10

Angular Diameter of the Airy Disk

FWHM Linear Diameter of the Airy Disk

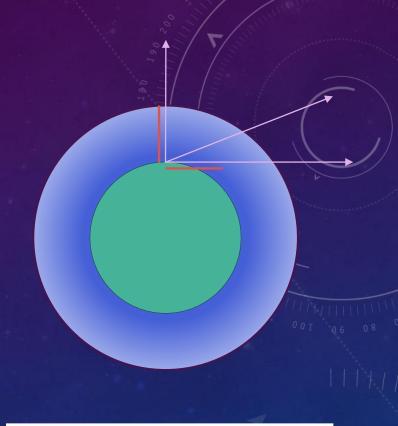
(IMAGE DEGRADATION)

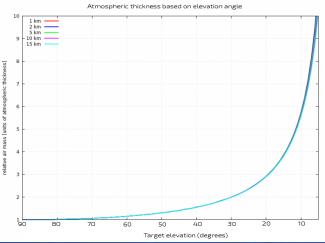
• Air turbulence produces distortion

- Wind speed (at all levels)
- Temperature
- Humidity
- Local factors
- Image effects depend on
 - Angular resolution
 - Exposure length
 - <u>Limits achievable</u> resolution, regardless of instrument capability

(ACHIEVABLE RESOLUTION)

- Astronomical seeing
 - Smallest feature resolvable due to blurring by atmo
 - Stack images of centroid of star's Airy disk
 - True random turbulence -> Gaussian distribution
 - FWHM of Gaussian peak = seeing
 - "Good" seeing ≈ 1-2"
 - Typically measured over time periods >> 10ms so measured values not necessarily useful for lucky imaging

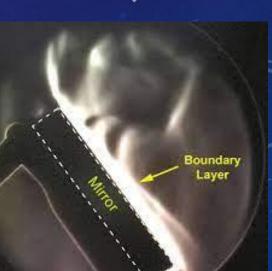

TLiDR : practically achievable resolution will be no better than seeing conditions at the relevant time-scale


				Clouds			Ind	ex			Bad Layer	s	Gro	ound	
		\bigcirc	Low	Mid	High	Arc Sec.	1	2	Jet Stream	Bot (km)	Top (km)	K/100m	Temp	Rel. Hum.	Celestial Bodies
		Sat ^{sunri}	2023-1 se: 06:		set: 18:	18 moonr:	ise: 00	:00 moo	onset: 15:08	moonphas	e: 41%				
1		5	0	0	0	0.70	5					0.0 K	69 °F	23%	L-V-J-UN-
1	06:39	6	0	0	0	0.69	5					0.0 K	70 °F	24%	L-V-J-U
1		7	0	0	0	0.69	5					0.0 K	71 °F	25%	LMV-J-U
		8	0	0	0	0.70	5			01.5	02.0		73 °F	26%	LMV-J-U
11%		9	0	0	0	0.70	5			01.5	02.1		77 °F	27%	LMVMU
1		10	0	0	0	0.71	5					0.0 K	82 °F	25%	LMVM
1		11	0	0	0	0.72	5					0.0 K	87 °F	22%	LMVM
1		12	0	0	0	0.72	5					0.0 K	89 °F	20%	LMVM
1		13	0	0	0	0.72	5					0.0 K	90 °F	18%	LMVM
5:08		14	0	0	0	0.71	5					0.0 K	90 °F	17%	LMVM
		15	0	0	0	0.68	5					0.0 K	90 °F	15%	-MVM
		16	0	0	0	0.64	5					0.0 K	88 °F	14%	-M-MP
	18:18	17	0	0	0	0.62	5					0.0 K	87 °F	14%	-M-M-SP
	10.10	18	0	0	0	0.61	5					0.0 K	85 °F	15%	M-S-NP
		19	0	0	0	0.61	5					0.0 K	82 °F	15%	S-NP
		20	0	0	0	0.60	5					0.0 K	79 °F	16%	JS-NP
		21	0	0	0	0.60	5					0.0 K	78 °F	16%	JSUNP
		22	0	0	0	0.60	5					0.0 K	76 °F	16%	JSUNP
		23	0	0	0	0.60	5	5	11 m/s	00.0	00.0	0.0 K	75 °F	17%	JSUNP
		Sun	2022												

https://www.meteoblue.com/en/weather/outdoorsports/seeing/36.292N-115.311E861_America%2FLos_Angeles

(IMAGE DEGRADATION)

- Ranges of air turbulence
 - Distant (atmospheric)
 - Mid (adjacent surroundings)
 - Near (within scope)
- Distant
 - For AVERAGE conditions, exposures under 7-10 ms have decent chance of stable seeing
 - Shorter is better, assuming equipment and target brightness permit
 - Image through as little air as possible
- ✓ TL:DR : Countermeasure (distant)
 - "Lucky" imaging high frame rate / short exposure video
 - High altitude location
 - High target elevation (transit)



(IMAGE DEGRADATION)

- Mid adjacent surroundings
 - Thermal plumes avoid imaging over blacktop, air conditioning vents, rooftops, etc.
 - Turbulent air avoid geographic features that channel or disrupt air hills, canyons, etc.
 - Best over water
- ✓ TLiDR : Countermeasures (mid)
 - Avoid local terrain conducive to thermals and turbulent air

(IMAGE DEGRADATION)

- Near (telescope)
 - Thermal equilibrium is a myth
 - Thermal mass of mirrors and large/heavy tubes will always lag ambient temp, resulting in boundary layer thermal plumes
 - Minimize thermal gradients / plumes within OTA
 - Strategy #1: keep everything inside tube at same temp, minimize temp changes
 - Closed tube scopes, e.g. SCT, Maksutov-Cass, Maksutov-Newt
 - Strategy #2: keep everything inside tube as close to ambient as possible
 - Open tubes better, e.g. Newtonian, open truss designs
 - Thinner tubes better, e.g. refractors
 - Eliminate / minimize boundary layer

(IMAGE DEGRADATION)

Closed tube OTAs

- <u>INSULATE tube</u>
 - 2 layers of Reflectix
 - Can also use neoprene, closed cell foam, etc.
- <u>No dew shield</u>
 - Minimize boundary layer of corrector plate
- Open tube OTAs
 - Active cooling for mirror
 - Boundary layer fan
 - Focuser / camera on bottom
- ✓ TLiDR : Countermeasures (near)
 - insulate closed tubes
 - cool open tubes + boundary layer fan

FUNDAMENTAL PRINCIPLES (COLLIMATION)

- Collimation
 - Absolutely critical for scopes that need it SCT, Newtonian, Maksutov-Cassegrains, etc.
 - Preferably immediately before imaging, at target elevation
 - Lock movable mirrors if possible
 - Use external focuser if possible for SCTs
 - MetaGuide
 - Only collimation method that actually examines the Airy disk
 - Live stacks Airy disk to help deal with seeing

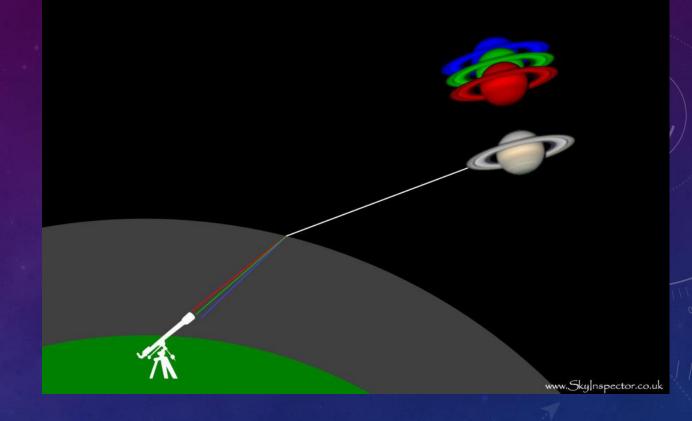
MetaGuide Intro and Download (smallstarspot.com)

EQUIPMENT SELECTION

- Scope
- Optical train / camera
- Mount / tripod
- Computer

EQUIPMENT SELECTION (SCOPE)

- Detail limited by aperture -> large aperture
- Planets are small -> long focal length
- Thermal stability -> prefer closed tube

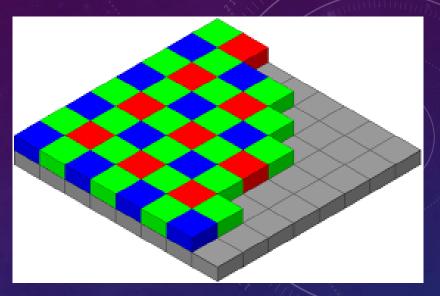

	Aperture	Focal length	Closed tube	Notes
SCT	✓	✓	✓	Prefer locked mirror, lower contrast due to central obstruction
Mak-Cass	×	\checkmark	\checkmark	Smaller central obstruction than SCT
Newtonian	\checkmark	×	×	Must collimate each time
Refractor	×	×	\checkmark	High contrast, unwieldy at long focal length

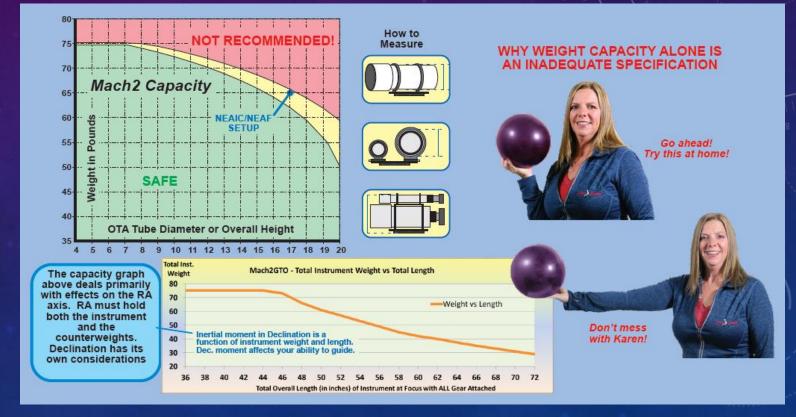
EQUIPMENT SELECTION (OPTICAL TRAIN)

- Optimally sample scope
 - f/10 2 micron pixels or smaller (ASI678)
 - f/7 1.5 micron pixels or smaller (QHY 5LIII 715C)

or

- 3.76 micron pixels Barlow to f/18 or higher
- BUT apparent brightness decreases with f/ ratio
- Atmospheric dispersion corrector
 - Atmosphere bends light differentially depending on wavelength
 - Significant below ~55 degrees elevation
 - Typically require at least f/10 beam
 - RGB Align in AutoStakkert!3 works, but not quite as well
- UV/IR cut filter




EQUIPMENT SELECTION (CAMERA)

- One shot Color (OSC)
 - Pros: Convenient acquisition, identical seeing conditions in various channels
 - Cons: Gives up some theoretical resolution due to Bayer matrix (can recover to a degree via Bayer Drizzle stacking), lower color contrast
- Monochrome
 - Pros: Higher true resolution and color contrast
 - Cons: more complex imaging train, time consuming acquisition, seeing variability
- High frame rate
 - +/- global shutter
- Don't need a big sensor
 - Jupiter ~ 1 pixel / mm aperture at optimal sampling
 - Well-aligned finder scope or flip mirror

EQUIPMENT SELECTION (MOUNT / TRIPOD)

- The more rigid / solid, the better
 - Total equipment weight is not the sole consideration
- Minimum tripod leg extension
- Tripod leg spreader
- Tripod weight bags
 - especially for carbon fiber tripods

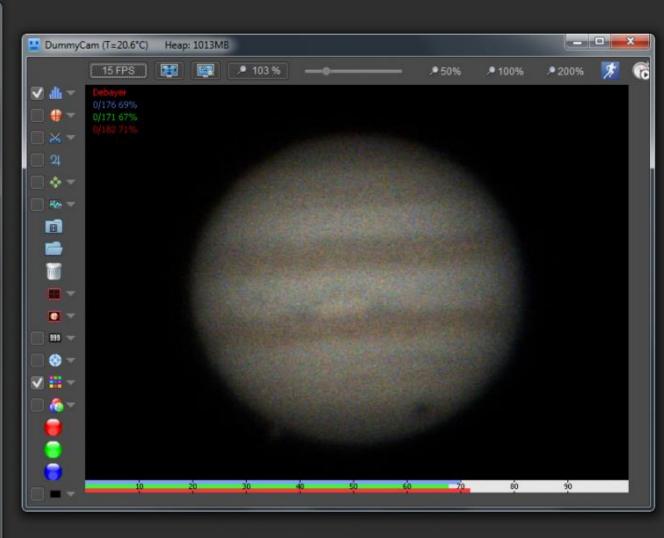
EQUIPMENT SELECTION (COMPUTER)

- Prioritize high frame rate / high disk throughput
 - Disable energy saving Power Plans, CPU max state limits, etc.
 - Low power NUCs may not be the best choice
 - Shortest USB3 cables possible
 - Fast storage
 - Internal NVMe SSD 3 GB / s
 - SSD 400 MB / s
 - HDD 120 MB / s
 - USB 3 600 MB / s
 - USB 2 60 MB / s
- High frame rate VIDEO capture software with native direct camera access
 - ASCOM and DirectShow too slow
 - FireCapture
 - SharpCap


800x800 8-bit video @ 150 fps ≈ 98 MB/s

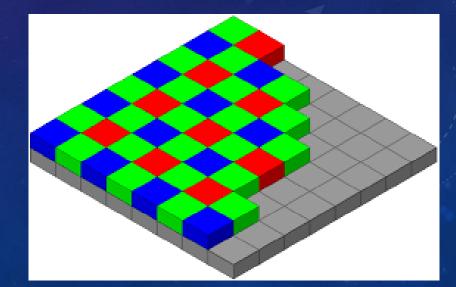
IMAGING WORKFLOW

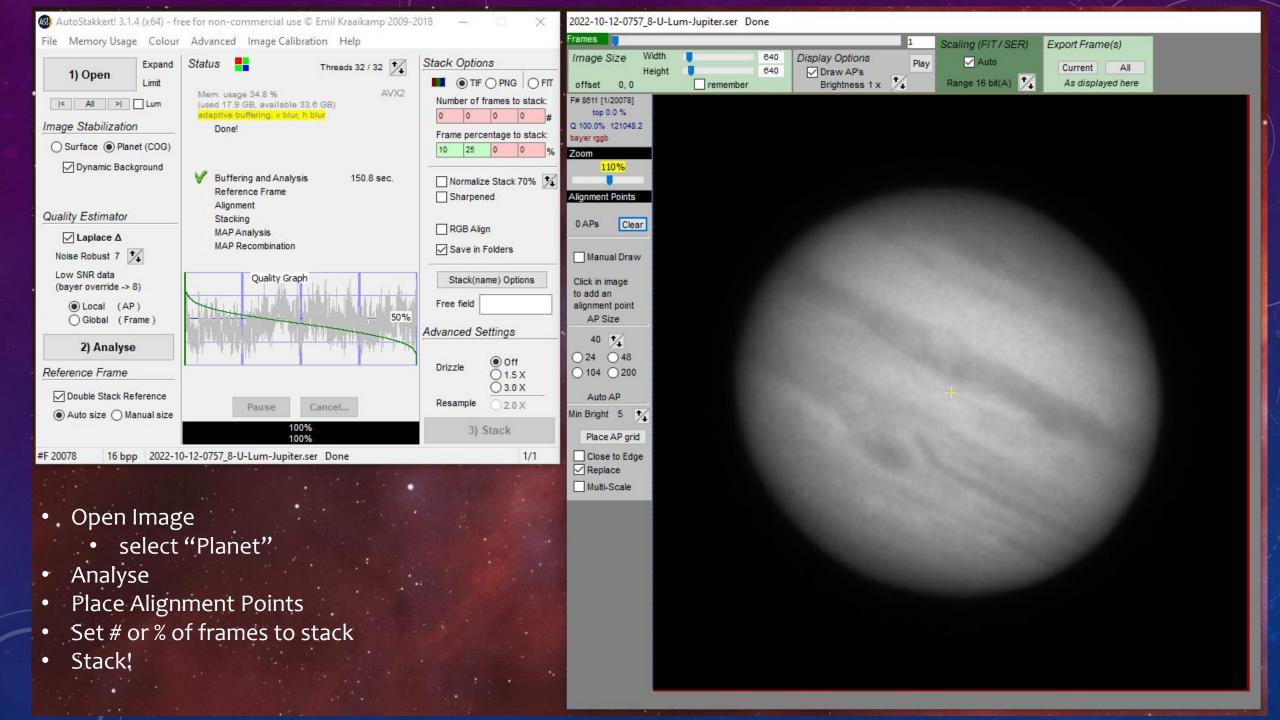
- Select site, tripod / mount setup, polar align, rotate camera to 0° orientation
- Start FireCapture
 - Connect mount and focuser
- Slew to and center planet, focus
 - Finder scope, flip mirror, wide field camera (quick detach may be helpful)
 - Gamma may be helpful for focusing, can use FireCapture PreProcessing to enable for preview ONLY
- Select correct FireCapture target profile
 - Jupiter: exposure ~4ms, gain as appropriate for ~90% histogram, full field of view, 240 sec limit
 - USB traffic 100, 8 or 12 bit depending on hardware, RAW (mono) capture, gamma OFF
 - AutoAlign on, reticle on, (optional) deBayer preview on, WinJUPOS compatible naming
- Rotate ADC level to horizon
- ROI to planet
- Set ADC with ADC Assist on
- (Optional) calibrate guiding
- (Optional) image loop script, esp if mono + filters
- Begin capture!

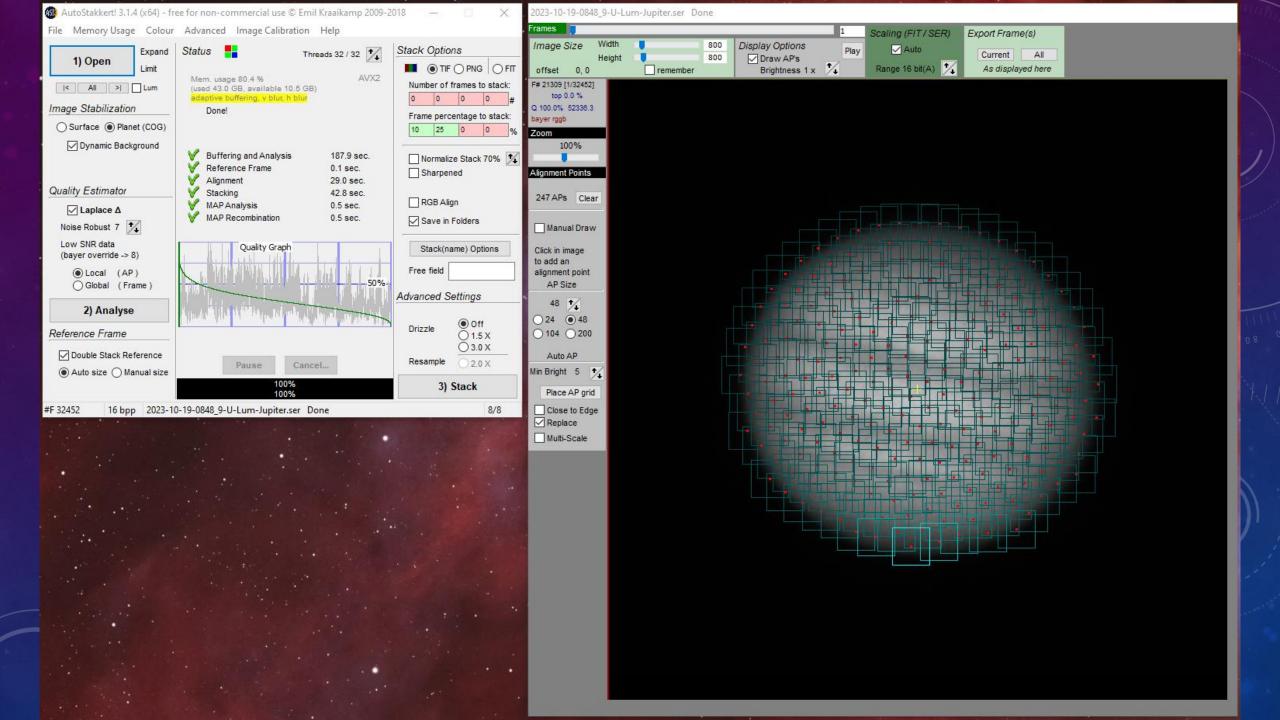


IMAGING SOFTWARE

- FireCapture
- SharpCap

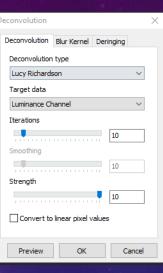

Comprehensive guide at: https://skyinspector.co.uk/firecapture-features-explainer/

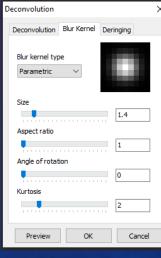

PROCESSING

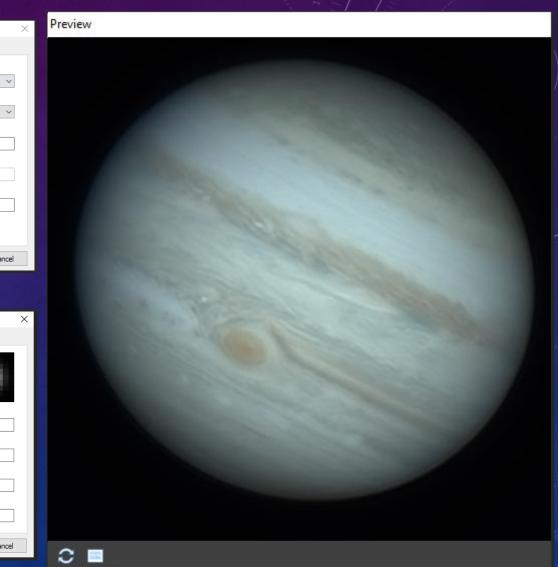

- Stacking
 - AutoStakkert! 3
- Sharpening
 - Astralmage, imPPG
 - WaveSharp
- Color correction and aesthetic tweaks
 - Photoshop, Affinity Photo, other traditional image processing suites

STACKING

- Increases signal-to-noise ratio
- Increases bit-depth resolution
 - Exact increase depends on number of frames stacked and system noise
- Averages seeing effects into (hopefully) Gaussian point spread function
 - Sets us up for deconvolution
- Bayer drizzle for color reconstruction without interpolation
- But planets are rotating! Jupiter and Saturn have very short rotations, max 4 minute video sequence before motion noticeable in AS!3 stack
 - 3 minutes if stacking entire frame as opposed to alignment points
- AutoStakkert! 3




SHARPENING

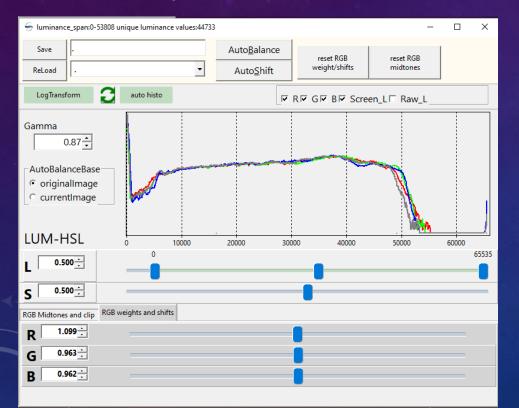

- Mathematically "undo" blurring (deconvolution)
 - Must be first step
- (OPTIONAL) Derotate and combine stacked images with WinJUPOS
- Increase feature edge contrast
 - Multi-scale (wavelet) techniques
 - Traditional, e.g. Unsharp mask

DECONVOLUTION

- Mathematically reduces PSF back into a single point
- Lucy-Richardson most commonly used
 - Specify size of PSF and number of iterations, optionally kurtosis and eccentricity
- Trial and error process to identify correct PSF size
 - Batch processing for consistency
- Astralmage
- imPPG

SHARPENING

- Numerous techniques
- Multiscale sharpening can "trap" noise at small scale
- WaveSharp nee Registax 6
- Astralmage



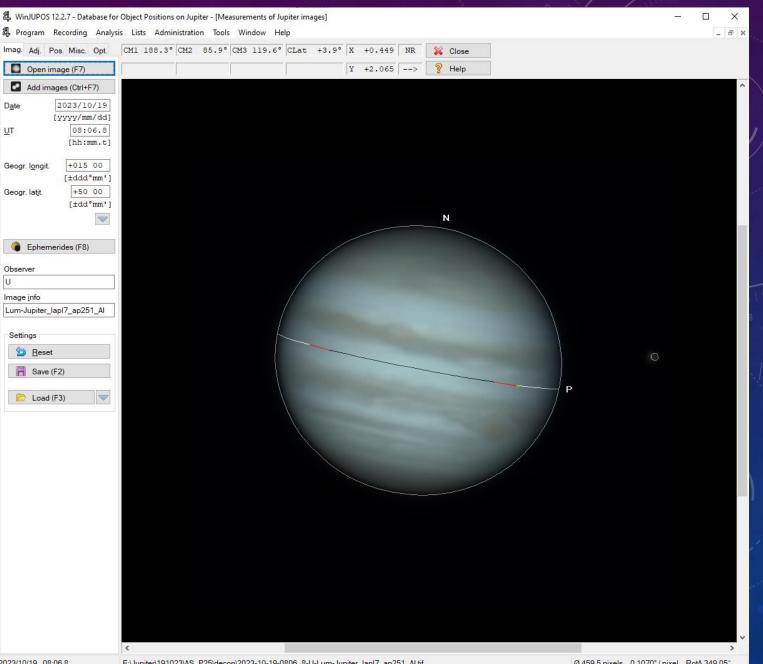
	62		Autom	atic(RO	1)			41m
	Processing	Pre-Process	Post-Process	Batch	Interface			
	config: C:\ Settings	Users\Patrick\ Name	AppData\Local'	\waveSh	arp_WIN64	٨		
	Save							
	ReLoad					•		
		Filter		Convo	lve			
	Sharpen	Gaussian	•	Lumir	nance	📩 Den	oise [1 2	1
		0.075		70.88		0.150	÷	
	-10 0	10 20		1 1	60	70 80	90	100
-		0.075		72.00		0.080	÷	
	-10 0	10 20		50	60	10 70 80	90	100
		0.072		69.88		0.100		
	-10 0	10 20	30 40	50	60	10 70 80	90	100
	LUM-HS	5L						

🐋 Release waveSharp 0.2.0.20@ File: 2022-10-12-0751_5-U-Lum-Jupiter_lap15_ap202_Al_Deconvolution_1.tif

COLOR CORRECTION

WaveSharp has AutoBalance function

Release waveSharp 0.2.0.20@ File: 2022-10-12-0751_5-U-Lum-Jupiter_lapI5_ap202_Al_Deconvolution_1.tif



WINJUPOS

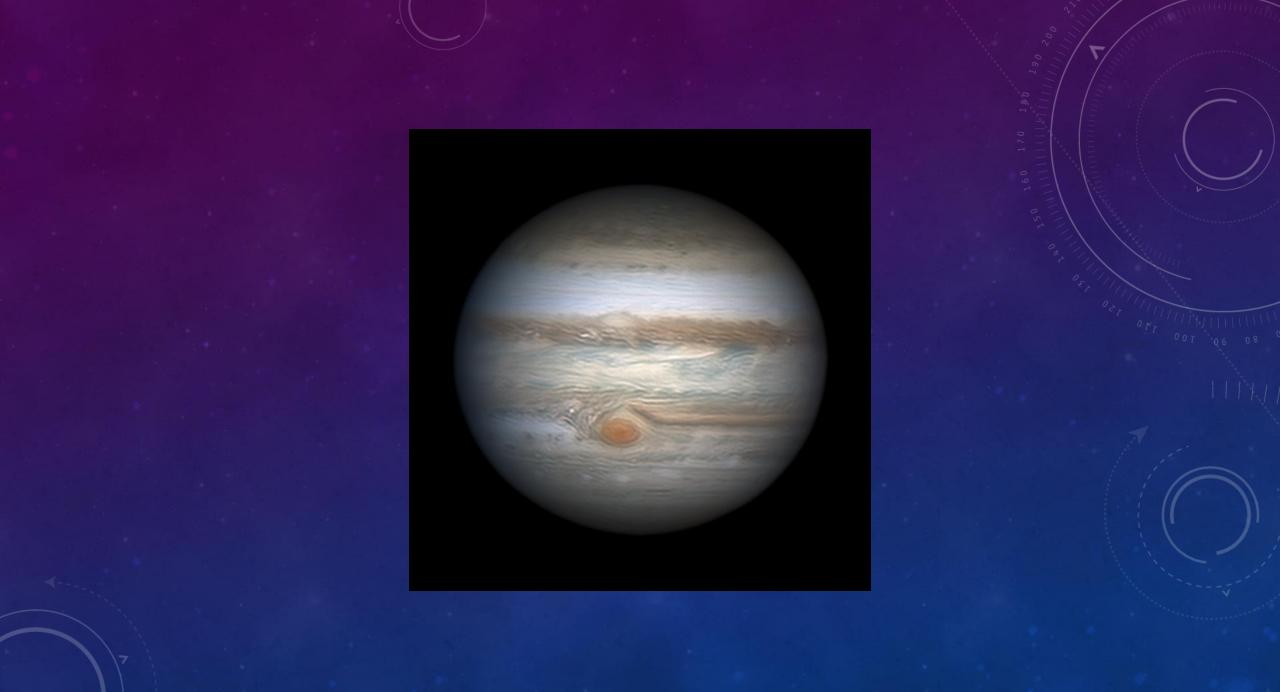
- Can "derotate" images to allow for stacking of stacks
- Allows integration time longer than 4 minutes
- FireCapture simplifies data input by encoding UTC time in filename
- AutoDetect works best on <u>sharpened</u> images, but may cause artifacts
- Measure individual stacked images
- De-rotate and combine

WINJUPOS

- Measure individual stacked, sharpened images
- Recording / Image Measurement...
 - F7 load image
 - F11 autodetect •
 - F₂ save measurements file •

WINJUPOS

- Tools / De-rotation of images...
 - Add measurement files
 - Compile Image


De-rotation of ima	iges			Σ
mage measureme	onts to be used Options		Edit	
Image measurem	ent	Weighting	LD value	^
2023-10-19-0710	.6-U-Lum-Jupiter_IapI7_ap251_AI	1.00	1.00	
2023-10-19-0724	.6-U-Lum-Jupiter_lapI7_ap251_Al	1.00	1.00	
2023-10-19-0738	.7-U-Lum-Jupiter_lapl7_ap251_Al	1.00	1.00	
2023-10-19-0752	.7-U-Lum-Jupiter_lapl7_ap251_Al	1.00	1.00	
2023-10-19-0806	.8-U-Lum-Jupiter_lapl7_ap251_Al	1.00	1.00	~
Destin. directory File name		•••		
File name	2023-10-19-0759_7-U-Lum-Jupiter_P25_derot.tif	۲		
Observer	U			
lmage info	Lum-Jupiter_P25_derot		Compile image	
Quadratic image size	551 pixels		(F12)	-
Image type	TIFF - Tagged Image File Format (48 bit)	Setting	gs	
	Image orientation	5	Reset	
	North at top South at top	H	Save (F2)	

A WinJUPOS 12.2.7 - Database for Object Positions on Jupiter

- • ×

mage 2023-10-19-0759_7-U-Lum-Jupiter_P25_derot

SUMMARY

- High resolution planetary imaging is hard
- You can't ever beat Mother Nature (the seeing)
- Every little thing is important
- Size matters
- Largest feasible aperture
- Barlow and camera pixel size selection to achieve optimal sampling based on f/ratio
- Atmospheric and thermal management
- High frame rate video capture
- Deconvolution / sharpening

FireCapture, AutoStakkert! 3, AstraImage, WaveSharp, +/- WinJUPOS